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Abstract

The lift on a particle that is caused by its proximity to a boundary and the equilibrium position of this

particle in a linear shear flow have been studied using the lattice Boltzmann method. The shear particle

Reynolds numbers examined were in the range 0–18 and the particle to fluid density ratios were in the range
1.005–1.1. We have found that heavy particles will deposit at the bottom of the channel, while lighter

particles remain suspended and attain an equilibrium vertical position, which is characterized by the

equality of the lift and the gravity forces. At this equilibrium distance from the boundary, the vertical

velocity component is zero, while the horizontal and rotational velocities of the particle are finite. For

circular particles, we have found out that the equilibrium position is independent of the initial height of

release of the particles and depends only on the density ratio of particle to fluid and the shear Reynolds

number. The particle equilibrium positions for the linear shear flow are compared with those computed for

Poiseuille flow conditions. Based on the numerical simulation results, a correlation has been derived be-
tween the particle-fluid density ratio and the critical particle Reynolds numbers needed to lift the particles.

The effects of particle rotation and shape on the equilibrium position have also been studied by simulating

the motion of rectangular particles.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Most of the studies related to the lift force on a solid surface are mainly the subject of aero-
dynamics. In the case of particulate flows and sediment studies, it is understood that certain
phenomena associated with the lift forces on particles are important in the migration of particles
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from walls, the fluidization of a bed of particles, the re-distribution of particles in shear flows and
as one of the mechanisms that causes the re-suspension of particles from the bottom of a conduit.
Regarding particulate flows close to walls, the older studies mainly focus on experimental

methods and produced a good number of experimental results, such as those by Segre and Sil-
berberg (1961, 1962) who found that neutrally buoyant particles released off center in a pressure-
driven pipe flow, will not migrate to the pipe center-line, but instead will find an equilibrium
position at about 0.6 radii off the center-line. The numerical simulations by Feng et al. (1994)
resulted in the same conclusion for a circular particle in a two-dimensional flow. Saffman (1965)
conducted the first analytical study on the lift exerted on a sphere by a shear flow and derived a
formula for this lift, which is applicable at low Reynolds numbers and far from all boundaries.
Mclaughlin (1993) studied the cases of a sphere in a wall-bounded linear shear flow in which the
flow outer region influences the lift force to the leading order. More recently, there are several new
studies on the lift force of a two-dimensional particle in Couette and Poiseuille flow by Joseph and
his co-workers (Joseph and Ocando, 2002; Joseph, 2002; Patankar et al., 2001). They developed
the ‘‘Arbitrary-Lagrangian-Eulerian’’ numerical method with body-fitted unstructured finite el-
ements, which is capable to compute the particle and flow interaction problems. More details on
this method and the problems solved may be found in Patankar et al. (2001). Also Kurose and
Komori (1999) studied the lift forces on a rotating sphere in a linear shear flow. They calculated
the lift coefficient for a stationary sphere and found that it rapidly decreases with increasing
particle Reynolds number. Actually at particle Reynolds number greater than 60, the lift coeffi-
cient becomes negative and they attribute this to the flow separation behind the particle.
In his Ph.D. thesis, Zhu (2000) studied the equilibrium position of a circular particle in Couette

flow and derived results that show the equilibrium position as a function of the particle Reynolds
number at particle/fluid density ratio in the range 1.001–1.01. The results were obtained at rela-
tively low particle Reynolds numbers (ReP < 5). Patankar et al. (2001) did a more detailed study
on the equilibrium position of a circular particle in a pressure-driven Poiseuille flow using the
finite element method, and derived a general data structure for the interrogation of the numerical
simulations to be used in developing a theory of fluidization by lift due to the motion of the fluid.
In this paper, we use the lattice Boltzmann method (LBM) to examine the transient motion of a

particle released from rest and to determine the vertical equilibrium position of circular and
rectangular two-dimensional particles in simple shear flow at Reynolds numbers up to 18. In a
previous study on particle resuspension (Feng and Michaelides, 2002a,b) we have found that
suspended particles close to a boundary would influence considerably the forces (drag and lift) of
stationary particles, which are at rest in the bottom of the channel. In this study, we try to de-
termine when the particles would settle or remain suspended in the flow at an equilibrium height.
The main parameters in this study are the particle Reynolds number and the density ratio. We
also study the effect of the initial gap between a rectangular particle and the channel bottom to the
motion of the particle and its equilibrium position.

2. Simulation method

The LBM has been discussed in detail in many articles (Ladd, 1994a,b; Chen and Doolen, 1998;
Feng and Michaelides, 2002a). It is a computational method based on a microscopic fluid model
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and is ideally suited for calculations of fluid-particle interactions where multiple particles are
involved. The LBM originated from the lattice gas (LG) automata, a discrete particle kinetics
method similar to Boltzmann�s kinetic theory of gases. The LG automata utilize a discrete lattice
and discrete time. It consists of two distinct processes, collision and propagation. Frisch et al.
(1986) are considered the first to apply this method to computational fluid dynamics and to have
recovered accurate solutions to the Navier–Stokes equations from computations based on an
early version of the LBM. In this method the fluid particles are assumed to reside on a uniform
simple orthogonal lattice (the most common configuration), and move from each node to its
neighbor nodes during the discrete time step. The no slip boundary condition on the solid particle
or the solid wall includes the so-called ‘‘bounce-back’’ rules (Ladd, 1994a,b). The force and torque
on each particle are computed by summing the individual force and torque at each solid node. In
order to smooth the forces and torques, these components are averaged over two time steps and
then used to update the particle velocity and position with simple time integration (Ladd,
1994a,b). A more detailed presentation of this method as applied to boundaries and groups of
particles may be found in our two previous papers (Feng and Michaelides, 2002a,b). The results of
these papers were validated by similar results based on the finite element method.

3. Results and discussion

We simulate a single suspended two-dimensional particle in two-dimensional Couette flow as
depicted in Fig. 1. The particle is initially being held at rest and at t ¼ 0 it is released inside the
flow domain. The direction of gravity is perpendicular to the flow direction and the particle is
slightly heavier than the fluid. Periodic boundary conditions are assumed at the inlet and the
outlet of the flow domain. The channel height is H and its width is W . Allowing the upper plate to
move with constant velocity UW while keeping the lower plate stationary creates the linear shear
flow. Thus, the shear rate G is UW =H .

Fig. 1. Schematic diagram of a particle in a shear flow.
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The following dimensionless parameters, which are used in the results of the simulations:

Channel Reynolds number:

ReC ¼ qfUWH
lf

Particle shear Reynolds number:

Rep ¼
qfGd

2

lf

Particle gravity Reynolds number:

ReG ¼ qfVgd
lf

Particle to fluid density ratio:

r ¼
qp
qf

In the definition of particle gravity Reynolds number, Vg is the terminal velocity of the particle
when it settles in an infinite fluid. It is given by the expression:

Vg ¼
ðr � 1Þqfgd2

lf
ð1Þ

For the numerical simulations, unless otherwise specified, we have generally used the following
dimensions: particle diameter 20 lattice units, channel height 200 lattice units and channel width
400 lattice units. From grid validation studies and our previous results (Feng and Michaelides,
2002a) we have found that these values for the flow domain and for the particle diameter yield
accurate results for the forces on the particles and their equilibrium positions. The fluid density is
equal to 1 and the density of the particle was a variable, close to 1. For most of the cases, the fluid
viscosity is chosen to be 1/30 in lattice units. This choice and the ones on the density of the particle
have resulted in particle shear Reynolds numbers in the range from 2 to 20.

3.1. Equilibrium positions of particles with different density ratios

Particles with r > 1 are released in the shear flow from rest at a certain height. In the absence of
flow, one expects these particles to settle in the bottom. However, the shear flow creates a lift and
the proximity to the wall amplifies this lift on the particles. For a particle that is slightly heavier
than the fluid, the particle lift may be high enough for the particle to migrate away from the
bottom. Thus, the particle will flow at an equilibrium height, the ‘‘equilibrium position’’ from
the bottom, where the combined lift of the shear and the proximity to the bottom wall is equal to
the apparent weight of the particle.
We computed the flow trajectories of several particles for a long time and determined the final

equilibrium positions of two-dimensional particles in the range 1:005 < r < 1:1 and for Reynolds
numbers in the range 2 < Rep < 20. We show the results of several of our simulations in Fig. 2,
together with the results by Zhu (2000), which were obtained by the finite element method for a
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narrower range of Rep. When the center of the particle is at dimensionless height equal to 0.5, then
the particle touches the bottom of the flow domain and is not considered suspended. Fig. 2 shows
that the lighter particles lift to higher equilibrium positions in the flow domain at relatively low
values of Rep. Heavier particles settle on the bottom of the flow domain and start being suspended
at larger Reynolds numbers. Similar observations were also made for particles in Poiseuille flow
by Patankar et al. (2001). It must also be pointed out that, at lower Reynolds numbers, the
equilibrium position of the particle is much more sensitive to the particle Reynolds numbers.
An interesting observation in Fig. 2 is that for the very light particles (r ¼ 1:005) the equi-

librium position appears to reach a maximum and then slightly decreases. This result is further
corroborated in Fig. 3, which depicts the trajectories of particles in the ðx; yÞ plane at four different
Reynolds numbers. It is evident that the final equilibrium position at Rep ¼ 12:5 is slightly higher
than the final equilibrium position of a particle at Rep ¼ 15 and the latter is slightly higher than
the equilibrium position at Rep ¼ 18. Because this result was unexpected, we conducted a number
of grid validation studies to ensure that this observation is not an artifact of the computational
grid used or of the relative height of the flow domain and we observed that indeed the numerical
value of the equilibrium position becomes slightly lower when Rep > 12:5. The difference, al-
though not significant, is of the order of 4%, a number that is higher than the numerical uncer-
tainty of the method used in this study. Also, we found that the particle starts to slightly oscillate
around its equilibrium position at Rep ¼ 15 and 18, with a small amplitude of oscillation. We must
point out that the particle Reynolds numbers of the rest of the simulations were not high enough
to look for similar results with heavier particles.
The transverse force on the particle is due to the relative rotation of the flow field with respect

to the particle. The transverse force is known as the ‘‘lift force’’ or the ‘‘Magnus force,’’ and is the
result of an inertial effect that causes a lower pressure on the side of the particle, where the velocity
is higher. Saffman computed this force in the case of shear flows and at the limit of very low
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Fig. 2. Equilibrium positions of a particle as a function of the Reynolds number at four different density ratios

(d=H ¼ 0:1, d=W ¼ 0:05).
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Reynolds numbers and derived a result, which is sometimes called ‘‘the Saffman force.’’ It must be
pointed out that both of these ‘‘forces’’ are the manifestation of the same effect, namely that the
particle experiences a transverse pressure gradient and, hence, a transverse force when the fluid
velocity is higher on the one side than the other. In the case of uniform and symmetric flow
around the particle the transverse force vanishes. In the particular case examined here, the
transverse force is magnified by the presence of the wall boundary.
In order to investigate the observed maximum in Figs. 2 and 3 we tried to investigate the

contribution of the three components of the total lift force exerted on the particle. However, since
we do not have a way to compute independently the effect of the wall on the particle, we could
only examine the behavior of the lift force when the particle/fluid density ratio is 1.005 and 1.03
respectively. For these calculations we have used a 600� 300 lattice domain with particle radius
equal to 15 lattice units, fluid viscosity lf ¼ 0:05 and density qf ¼ 1. Because fluctuations over the
equilibrium position were observed at Rep ¼ 15 and 18, we performed computations for at the
maximum, minimum and average height of the particles. The results of the computations are
shown in Table 1. It is evident that the product xðUp � U1Þ, which determines the magnitude of
the lift force shows a maximum at approximately Rep ¼ 12:5 and then drops at a fast rate because
the relative velocity of the particle diminishes. We think that this reduction of the lift force is the
main reason for the observed maximum of the total lift force in Figs. 2 and 3 for r ¼ 1:005. In the
case of r ¼ 1:03, all computations show that there is not a comparable decrease in the Magnus
force, mainly because the magnitude of the relative velocity remains finite. Because of this, a
maximum in the total lift force is not observed at this density ratio.
Fig. 4 shows the particles� velocity in the vertical direction at r ¼ 1:005. It is apparent that the

particles experience a lift at all three Reynolds numbers and attain their equilibrium positions
where the vertical velocity stays at zero (Rep ¼ 8) or exhibits very low amplitude oscilla-
tions around zero (Rep ¼ 15 and 18). This observation is consistent with the results in Fig. 3 and
Table 1, which show that the particle slightly oscillates around its equilibrium position at the
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Fig. 3. The trajectories of a particle at different Reynolds numbers for r ¼ 1:005.
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higher particle Reynolds numbers. It must be pointed out that Mclaughlin (1993) and Kurose and
Komori (1999) observed a drastic reduction of the lift at values of the Reynolds number exceeding
50. In the study by Kurose and Komori (1999) the lift actually becomes negative at the higher
values of Rep. This drastic reduction on the lift force is mainly due to the flow separation behind
the particle. Flow separation has not been observed in this study (Rep is too low) but the slight
reduction on the lift observed here may be due to the beginning stages of the flow asymmetry,
which is apparent in Fig. 5 and, which, at higher Rep leads to separation.
Fig. 5 shows the disturbance velocity field created in the shear flow by the presence of the

particle at two different Reynolds numbers. The disturbance velocity is defined as the actual

Table 1

Particle velocities and equilibrium position for r ¼ 1:005 and r ¼ 1:03 at different shear Reynolds numbers
r Rep Equilibrium

position, heq
Rotational

velocity, x
Velocity Up Fluid velocity

at heq, U1
xðUp � U1Þ
� 106

j1=2

1.005 8 1:234d 0.000188 0.01621 0.01645 0.045 0.0211

12.5 1:245d 0.000286 0.02583 0.02594 0.032 0.0264

15 1:233d (avg) 0.000336 0.03079 0.03083 0.013 0.0289

15 1:229d (min) 0.000336 0.03064 0.03073 0.030 0.0289

15 1:237d (max) 0.000335 0.03093 0.03092 )0.004 0.0289

18 1:200d (avg) 0.000394 0.03602 0.03601 )0.003 0.0316

18 1:196d (min) 0.000394 0.03584 0.03588 0.016 0.0316

18 1:205d (max) 0.000393 0.03620 0.03614 )0.023 0.0316

1.03 8 0:565d 0.000123 0.00470 0.00753 0.344 0.0211

12.5 0:732d 0.000253 0.01370 0.01525 0.405 0.0264

18 0:867d (avg) 0.000382 0.02508 0.02600 0.357 0.0316

18 0:865d (min) 0.000383 0.02499 0.02595 0.369 0.0316

18 0:868d (max) 0.000381 0.02517 0.02604 0.334 0.0316
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Fig. 4. Particle vertical velocity components at various Reynolds number at r ¼ 1:005.
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velocity of the flow field minus the imposed shear velocity. The figure shows the vortices, which
are created by the presence of the particle at its upper and lower sides and which contribute to the
total lift. It must be pointed out, however, that if these vortices become too strong and the flow
separates, the lift decreases drastically (Kurose and Komori, 1999).
Patankar et al. (2001) studied the lift force and equilibrium position of a circular particle in a

Poiseuille flow. Fig. 6 shows a comparison of the equilibrium positions for particles in the linear
shear flow we examine here and their results for Poiseuille flow. In this case, the size of the
computational domain is chosen to be H ¼ 12d and L ¼ 22d and the particle-fluid density ratio is
1.01, which is the same as in the simulations of Patankar et al. (2001). Since the shear in a
Poiseuille flow diminishes from the boundary to the center of the flow, we have chosen to use the
shear at the observed equilibrium position in the study by Patankar et al. (2001) as the (constant)
shear of our study. For the particle Reynolds numbers range considered in the two studies, it

Fig. 5. The disturbance velocity around the particle at (a) Rep ¼ 10 and (b) Rep ¼ 18, both for r ¼ 1:005.
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Fig. 6. Equilibrium position at three different shear Reynolds numbers under linear shear flow and Poiseuille flow.
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appears that, at the same shear Reynolds number, the particles in the linear shear flow tend to
reach higher equilibrium positions. For example, at Rep ¼ 2:83, the equilibrium position in the
Poiseuille flow is 0:5012d above the channel bottom, while the equilibrium position is about 0:53d
for the same particle in a linear flow. This may be due to the fact that the shear is reduced
monotonically in Poiseuille flows and, hence, a slight upward departure of the particle from its
equilibrium position would result in a decrease of the lift.
In order to investigate the effect of the curvature of the shear function, we considered a case of

shear Reynolds number equal to 4.17 in Poiseuille flow. The equilibrium position in this case is
0:543d above the channel bottom. At this equilibrium position, the shear rate at the center of the
particle is 91% of the shear rate at the wall. In order to achieve the same ambient shear rate for a
particle in a simple shear flow, the corresponding particle shear Reynolds number should be
Rep ¼ 3:79. We found that the equilibrium position for Rep ¼ 3:79 in linear shear flow is 0:57d.
This observation shows that the curvature of the shear profile tends to decrease the total lift force
on the particle.
It is of interest to have a map that delineates when a particle settles at the bottom boundary or

remains in suspension at an equilibrium distance from the bottom. For this reason, we have
performed computations with the density ratio, r, and the Reynolds number, Rep, as parameters.
For the purpose of discriminating settling or suspension of particles, we define that particles that
attain an equilibrium position yE=d < 0:52 (that is, their lowest point is at 0.02 diameter from the
bottom surface of the channel), are settled, while particles that attain an equilibrium position
higher than 0.52 are suspended. Fig. 7 is a map that shows the results of these simulations. The
symbol M denotes a suspended particles and the symbol O denotes a settled particle. We have
chosen the dimensionless density difference, r � 1, as the independent variable in this figure,
because the driving force of the settling problem for a particle is proportional to the density
difference. The dependent variable, Rep is a function of the shear rate of the flow. The boundary
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Fig. 7. Settling or suspended particles with r and Rep, as parameters. The symbol M is for suspended and O is for settled
particles. The curve denotes the correlation equation for the two regions.
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that separates the two regions of the symbols M and O distinguishes the settling region (lower part
of the figure) from the suspension region (upper part of the figure). A correlation equation of this
boundary curve may be interpreted as the locus of all the critical shear Reynolds numbers Rep
needed to lift a particle of density ratio r is derived based on the simulation data:

Rep ¼ 58ðr � 1Þ0:59 ð2Þ

Alternatively, the above formula may be written in terms of the gravity Reynolds number, which
is a function of the terminal velocity and, hence, of the density difference as follows:

ReG ¼ 0:997Re1:69p ð3Þ

Patankar et al. (2001) obtained a similar correlation for their computations on Poiseuille flow,
which is presented here for comparison:

ReG ¼ 2:3648Re1:3904p ð4Þ

3.2. The effect of the initial position of the particle on the equilibrium position

It must be pointed out that all the data used in Fig. 7 were obtained from numerical compu-
tations. The numerical error associated with them is less than the area occupied by the corre-
sponding symbols. We performed several computations in order to determine if the initial position
of the spherical particle plays an important role on the equilibrium position and we found that the
equilibrium position is unique and does not depend on the initial conditions. This is demonstrated
in Fig. 8, which shows the trajectories of a particle with density ratio r ¼ 1:01 at Rep ¼ 10, when it
is released at three different positions, denoted by y0. It is evident that the particle will eventually
reach the same equilibrium position, regardless of its initial position. We have also observed that,
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Fig. 8. The trajectories of a particle released at three different locations at r ¼ 1:01 and Rep ¼ 10. (d=H ¼ d=W ¼ 0:1).
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in general, when the particle is released from an initial position, which is higher than the equi-
librium position, the initial transient lift force is high enough to move the particle upwards. After
the particle translational and rotational velocities reach their equilibrium states in the flow, the
particle attains always the same equilibrium position, yE, which is independent of its initial po-
sition. We have also observed that when the particles are released from below their equilibrium
position, then, in general, they rise only to the equilibrium position and they remain at this level.
Fig. 8 also shows that the rotation of the particle affects the equilibrium position as shown in the
cases of the two particles that are released at y0=d ¼ 2:5. One of these particles is allowed to rotate
in the flow, while rotation is suppressed in the motion of the other and only translation is allowed.
In all our calculations we have observed that the particle rotation always enhances the lift force
and allows the particle to reach a higher equilibrium position (because of the Magnus part of the
lift force). This is consistent with the findings in studies of particles in Poiseuille flow (Patankar
et al., 2001; Joseph, 2002).

3.3. Equilibrium positions for particles with a rectangular cross-section

Particles in engineering applications are seldom spherical or cylindrical. For example, a high
percentage of the fibers used in the paper and pulp industry have rectangular cross-sections. For
this reason it is of interest to study the effect of the shape of the particle on its equilibrium po-
sition. In the case of irregular particles it is useful to define a hydraulic diameter as follows:

dh ¼
4A
P

ð5Þ

where A is the area of the two-dimensional particle and P is its perimeter. The hydraulic diameter
of a circular cylinder is equal to its proper diameter.
We consider a rectangularly shaped two-dimensional particle with length and width denoted by

a and b and performed computations for two cases: The first, for a ¼ b ¼ 20, that is a square
shape, and the second for a ¼ 2b ¼ 30. The hydraulic diameter in each one of these cases is
dh ¼ 20 and this is the same as the diameter of all the circular particles of the previous sections.
Fig. 9 shows the trajectories of the rectangularly shaped particles together with that of a spherical
particle at Rep ¼ 12 and r ¼ 1:01. It is seen that the rectangular particles clearly attain equilibrium
positions and that they perform small-amplitude oscillations as they rotate around these posi-
tions. It is also observed that the equilibrium position of the square particle is close to that of the
circular particle, while the elongated rectangular particle attains a higher position.
It is of interest to note that, because the rectangular particles do not exhibit the same symmetry

at any orientation in the flow, their rotation in the flow field creates fluctuations in the hydro-
dynamic force, which is manifested as fluctuations in the lift and drag components of the force
and, finally, as velocity fluctuations. The spherical particle is symmetric and the force exerted on it
is constant. Fig. 10, shows the two velocity components of the spherical and the elongated
rectangular particle (a ¼ 2b ¼ 30) at Rep ¼ 12. It is apparent that the particles reach an equilib-
rium height, since the vertical component of their velocities is very close to zero, with the rect-
angular particle exhibiting small symmetric fluctuations. A glance at the longitudinal component
of the velocity reveals that the drag force on the elongated, rectangular particle is higher than that
of the spherical particle and that the longitudinal velocity undergoes small-amplitude fluctuations
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around its mean value. The fluctuations are due to the rotation of the elongated particle and the
fact that the flow ‘‘sees’’ different frontal areas as this particle translates and rotates.
In the case of a spherical particle, the equilibrium position is independent of how the particle is

released. However, we have found out that a rectangularly shaped particle with unequal axes
exhibits a behavior that leads to a bifurcation of the value of the equilibrium position. This type of
particle may fall and slide along the channel bottom and not lift at all when the initial gap between
the particle and the bottom, which is denoted by d here, is less than a critical value. In this case the
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long axis of the particle, a, is parallel to the bottom. This occurs even if the particle is very light
and would ordinarily be lifted to a much higher equilibrium position when resuspended. Fig. 10
shows the trajectories of three cases where the same rectangularly shaped particle is released at
different positions from the bottom plate: d=dh ¼ 0:125, 0.158, and 0.292. In these simulations the
flow viscosity is chosen to be 0.05 and a finer grid was adopted with the channel width L ¼ 600
and height H ¼ 300. The velocity on the top plate is UW ¼ 0:3; the length and width of the particle
are 45 and 22.5 respectively (this gives the particle hydraulic diameter dh ¼ 30), the shear Rey-
nolds number is 18, and the particle to fluid density ratio is 1.005 (Fig. 11). The results of this
bifurcation behavior show that, the critical gap that causes the particle to slide along the channel
bottom is between 0.125 and 0.158 hydraulic diameters.
The reason for this behavior of the elongated rectangular particles is that the initial gap be-

tween the particle and the bottom plate is very small. Any lifting of the particle would necessitate
the filling of this gap with surrounding fluid, which has to rush into the gap. This rushing of the
surrounding fluid creates a suction that counteracts the weak lift force developed. This keeps
the lower side of the particle close to the bottom, at an equilibrium distance that is determined by
the shear rate and the density of the particle.
Fig. 12 shows the particle trajectory in the channel when the particle is released at the three

different gaps as specified above. The time step in two consecutive frames is 3000 lattice time units
(or t� ¼ 3). The results indicate that when a light rectangularly shaped particle (and most likely
other polygonal particles) is approaching the channel bottom, it may be attracted to the bottom
and, without making contact with the flat bottom of the channel, it may slide along without being
resuspended into the flow again. Running the simulation for a long time convinces that the
rectangular particle is not moving away from the wall in a very slow motion. The reason for the
parallel motion is that a slight wedge is formed between the rectangle and the flat bottom that
provides sufficient suction to counteract the lift and keep the particle in the same vertical position.
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Fig. 11. The vertical position of a rectangular particle for Rep ¼ 18 and r ¼ 1:005 released at three different positions.
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Regarding Fig. 12b, the apparent slight penetration of the rectangle on the sixth frame into the
boundary is simply an artifact of the graphics. The numerical scheme does not allow any
boundary penetration.

4. Conclusions

The combination of the shear lift, the rotational lift and the interactions with the bottom wall,
prevent relatively light particles from settling in the bottom of a channel. These particles remain in
suspension at an equilibrium position, which is characterized by the equality of the lift forces and
the apparent weight of the particle. By using the LBM, we computed the trajectories and deter-
mined the equilibrium positions of circular and rectangular particles in simple shear flow, for
density ratios up to 1.1 and for particle Reynolds numbers up to 18. It was found that a particle,
which in the absence of shear would settle in the bottom of the channel, is actually lifted and
remains indefinitely in suspension, close to the bottom of the channel when the Reynolds number
is large enough. For example, a particle of density ratio equal to 1.01, remains in suspension when
the shear Reynolds number is higher than 5. It is expected that at very high shear rates particles of
higher density ratio would remain in suspension. By comparison with those results obtained by
Patankar et al. (2001) for Poiseuille flow, we have found that at the same shear Reynolds numbers,
particles in linear shear flow are easier to be lifted and reach higher equilibrium positions than that
in Poiseuille flow. We have found out that the equilibrium position is independent of the initial
position of the particle and that it depends mainly on the particle Reynolds number (defined with

Fig. 12. Particle motions when released at different gaps, d=dh ¼ 0:125, 0.158 and 0.292 (there are 3000 iteration steps
between two consecutive frames).
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respect to the shear) and the particle to fluid density ratio. Transient effects cause a particle that is
released above its equilibrium position to initially rise and then fall back to this equilibrium
position. Particle rotation always adds to the lift. In general, rectangularly shaped particles reach
equilibrium positions that are higher than spherical particles with the same hydraulic diameters.
Because of their lack of symmetry with respect to the flow, the hydrodynamic force, velocities and
position of the rectangular particles exhibit small-amplitude fluctuations around their mean
values. A light rectangularly shaped particle that is released very close to the flat bottom may be
forced to an equilibrium position that is closer to the channel bottom and then slide along the
channel bottom in this equilibrium position.
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